Выбор циркуляционного насоса для системы отопления
Системы отопления с основанным на разности плотности холодной и нагретой воды гравитационным принципом циркуляции теплоносителя постепенно уходят в прошлое.
Циркуляционный насос в составе современных систем отопления позволяет качественно изменить принцип работы системы отопления с самотечного на принудительный. Циркуляционный насос обеспечивает систему отопления комфортом и управляемостью, повышает энергетический коэффициент полезного действия всей системы. Существующие гравитационные системы отопления частных домов повсеместно подвергаются модернизации и оснащаются циркуляционными насосами, установленными на «байпасе», для усиления и оптимизации работы самотечной системы. Функция циркуляционного насоса в системе отопления состоит в обеспечении циркуляции в замкнутом контуре определенного объема теплоносителя достаточного для обогрева помещения.
Так как же выбрать циркуляционный насос для системы отопления? Какие параметры и характеристики циркуляционного насоса необходимо предварительно определить?
Сразу же оговорим – цену, цвет и производителя циркуляционного насоса оставим за пределами технических характеристик, необходимых для осуществления корректного выбора. Размеры и подключение циркуляционного насоса также оставим за пределами обзора.
Основными рабочими параметрами циркуляционного насоса есть напор и производительность. Эффективность передачи генерируемого котлом тепла к радиаторам зависит только от этих параметров, их соответствия потребностям системы в тепле и ее гидравлическому сопротивлению. Для корректного выбора циркуляционного насоса требуется количественно определить или задать эти два параметра – напор и производительность. Инженерные методики точных расчетов характеризуются достаточной громоздкостью и сложностью. Для самостоятельного же выбора циркуляционного насоса можно использовать упрощенные расчеты, основанные на упрощенных формулах и усредненных технических данных.
1. Тепловая мощность системы отопления и расчет производительности циркуляционного насоса.
Начнем с того, что для определения требуемой производительности циркуляционного насоса необходимо предварительно задать, определить или рассчитать полезную тепловую мощность существующей или проектируемой системы отопления.
Тепловая мощность системы отопления основана на количестве тепла, которое требуется для комфортного обогрева здания, находится в прямой зависимости от его размеров и теплоизоляционных свойств внешних ограждающих конструкций (пол, стены, окна, двери и т.д.), максимальной температуры наружного воздуха, допустимой температуры воздуха внутри помещений, массивности и других характеристик здания. Площадь и объем отапливаемой части дома или здания определить не составит особого труда. Есть план здания или есть рулетка с калькулятором. Рассчитать тепловые потери через ограждающие конструкции можно, но придется учитывать не только их площадь, но и характеристики материалов, их толщину, конструктивные особенности и даже ориентацию ограждения. Это сделает расчет громоздким и потребует специальных знаний. Для упрощенного расчета тепловой мощности можно использовать строительные нормы тепловых потерь для зданий и сооружений определенного типа с учетом климата и теплоизоляции. Тепловую мощность системы отопления загородного дома можно принять из расчета 0,1кВт на 3 м3 отапливаемого объема помещении или 0,1кВт на 1 м2 отапливаемой площади. Если же помещение утеплено недостаточно принимают тепловую мощность системы отопления с учетом больших тепловых потерь. Если дом хорошо утеплен и использованы для теплоизоляции современные материалы и технологии значение тепловой мощности может быть гораздо меньшим. В любом случае, дополнительная «шуба» для дома выглядит предпочтительнее постоянных экономических затрат на поддержание комфортного тепла в доме.
Например, в Финляндии на законодательном уровне строительные нормы предусматривают энергосберегающую теплоизоляцию домов с компенсируемыми потерями из расчета 3 кВт тепловой мощности на 100м2 отапливаемой площади. И это с учетом северного климата. Такая политика страны в области энергосбережения.
В уже существующих системах отопления с гравитационным принципом циркуляции при выборе циркуляционного насоса тепловую мощность системы можно упрощенно принять равной тепловой мощности отопительного котла.
Определившись со значением тепловой мощности системы отопления выполним расчет производительности циркуляционного насоса, используя простую эмпирическую формулу:
V = Q/(1,163 х Δt)
Где:
V – требуемая производительность насоса(объемная скорость потока теплоносителя), м3/ч;
Q – суммарная тепловая мощность системы, кВт. Например, тепловая мощность системы отопления, полученная в результате расчета или приравненная к максимальной генерируемой тепловой мощности котла.
1,163 – коэффициент удельной теплоемкости воды.
Δt – разность температуры в напорном и обратном трубопроводах. Для стандартного контура двухтрубной системы отопления разница обычно составляет 20С, для контура «теплый пол» разность температур принимается из расчета 5-10С.
Например, в двухтрубной системе отопления дома с тепловой мощностью 16кВт и разностью температур в прямом и обратном трубопроводах 20С, циркуляционный насос должен обеспечить объемную скорость потока (производительность) не менее:
V = 16/(1,163 х 20) = 0,7 м3/ч.
2. Гидравлическое сопротивление движению теплоносителя в контуре системы отопления и напор, создаваемый циркуляционным насосом.
Движение воды в замкнутом контуре системы отопления определяется не перепадом высоты, как это принято для открытых систем, а исключительно потерями напора на преодоление сил трения в элементах системы. Поэтому циркуляционные насосы не отличаются высокими напорными характеристиками ввиду отсутствия в их необходимости.
Задача циркуляционных насосов «толкать» теплоноситель и поддерживать циркуляцию в замкнутой системе, а не перекачивать воду с точки А в точку Б с учетом перепада высоты. Поэтому, «рыночный» выбор циркуляционного насоса по напорной характеристике и с учетом «этажности» дома, мягко скажем, некорректный. Куда уж логичнее было бы привязывать напор насоса к отапливаемой площади, а вместе с ней и определенной длине и разветвленности системы отопления. Но это уже не расчет, а выбор, основанный не на определении «рабочей точки» насоса, а на критериях, подобных цене и цвету насоса.
Напор циркуляционного насоса должен обеспечить преодоление общего сопротивления системы отопления движению потока теплоносителя с расчетной производительностью. В зависимости от этапа установки циркуляционного насоса оценку потерь напора можно выполнить несколькими относительно простыми способами. На стадии проектирования системы отопления суммарный расчет сопротивлений определяется в соответствии с существующими методиками, включая ряд компьютерных программ. Расчет базируется на суммировании значений линейных (длина и сечение трубопроводов) и локальных (запорная арматура, диффузоры и конфузоры потока, колена различных радиусов и т.д.) сопротивлений, указанных в справочниках или предоставленных производителем.
Точный расчет потерь напора в существующей системе отопления сделать уже достаточно сложно. Выполняют ориентировочный расчет потерь напора в магистральных трубопроводах и фитингах с использование средних значений и коэффициентов влияния. Упрощенно линейное сопротивление прямого участка расценивают из расчета 0,015м падения напора на 1 погонный метр трубопровода. Потери в фитингах и запорной арматуре принимают из расчета 30% от суммарных линейных потерь напора. Если в системе отопления установлены терморегулирующие клапаны общее сопротивление потоку всей системы отопления увеличивают на 50-70%.
Расчет напора циркуляционного насоса для преодоления сопротивлений в дижению теплоносителя в контуре системы отопления, можно выполнить по упрощенной формуле, разработанной инженерами концерна Wilo:
Н = k×R× l
Где:
Н – напор циркуляционного насоса, м.в.ст.;
l – общая длина магистральных трубопроводов к самому отдаленному радиатору, м;
R – средневзвешенное удельное гидравлическое сопротивление трубопровода, Па/м;
k – дополнительный коэффициент, учитывающий местные сопротивления в соединениях и арматуре, Па;
Для упрощенного расчета принимаем:
- удельное сопротивление трубопроводов R = 100 - 150 Па/м;
- дополнительный коэффициент местных сопротивлений k = 1,3 - для простых системы отопления с минимальным количеством арматуры, 2,2 - для систем отопления с регулирующей аппаратурой и 2,6 – для сложных систем отопления.
Например, длина магистрального трубопровода в простой двухтрубной системе отопления составляет 35 м. Потери напора в контуре составят:
Н = 1,3×0,015× 35 = 7кПа = 0,7 м.в.ст.
Получив требуемые для выбора параметры производительности и напора, сочетание которых называют «рабочей точкой» насоса, можно приступать к выбору циркуляционного насоса по каталогу из модельного ряда производителя. Каталог производителя циркуляционных насосов или инструкции по эксплуатации содержат графики рабочих характеристик.
Нанеся на графики ряда насосов положение рассчитанной «рабочей точки» оцениваем степень совпадения «рабочей точки» с напорно-расходной кривой для каждого из вариантов рассматриваемых циркуляционных насосов.
Выбор циркуляционного насоса осуществляем по максимальной близости расчетной точки к графику насоса. Из двух приемлемых вариантов циркуляционных насосов выбираем меньший по мощности.
Существует ошибочное мнение, что необходимо выбирать насос на основе «чувства страха» с заведомо большими параметрами. Известно что, при скорости циркуляции теплоносителя в системе на 50% ниже пиковой производительности радиаторы отопления будут отдавать в систему 85% тепловой энергии.
Традиционные циркуляционные насосы с «мокрым» ротором обычно содержат ступенчатую трехскоростную систему регулирования. Переключение скоростей позволяет адаптировать характеристики насос к потребностям системы отопления. Современные энергосберегающие циркуляционные насосы с частотным регулированием позволяют адаптировать насос к требованиям системы бесступенчато, в автоматическом режиме и с высокой точностью.
В заключении давайте рассмотрим, что часто оказывает влияние на выбор в пользу того или иного циркуляционного насоса кроме основных параметров - производительности и напора. Казалось бы, напор и производительность - главные критерии выбора для циркуляционного насоса, но на практике, потребитель часто оценивает насос и осуществляет выбор ориентируясь наравне с рабочими характеристиками на цену, имя производителя и страну происхождения. С производителем и ценой обычно связывают надежность и долговечность циркуляционного насоса.
Циркуляционные насосы европейского производства стоят дороже, но отличаются надежностью и техническим соответствием. Циркуляционные насосы, продаваемые под торговыми марками без указания завода-изготовителя, насосы китайского производства, насосы-«подделки» стоят намного дешевле, но нет гарантии их длительной и надежной работы и часто нет уверенности в соответствии их рабочих характеристик задекларированным. Выбор зависит от личных предпочтений и предыдущего опыта – надежный и качественный циркуляционный насос за большую стоимость или дешевый вариант с возможной перспективой быстрой замены.
Делаем доставку в Бровары, Борисполь, Киев, Винницу, Днепропетровск, Донецк, Житомир, Кировоград, Харьков, Ивано-Франковск, Запорожье, Луганск, Луцк, Львов, Одессу, Полтаву, Ровно, Сумы, Тернополь, Ужгород, Херсон, Черкассы, Чернигов, Черновцы и по всей Украине.